So far, our All About Stall series has focused on engine setup and its effect on torque converter stall speed selection. We’ve covered the importance of things like camshaft selection, engine operating rpm, and even exhaust backpressure.
Another key part of the equation, according to ACC Performance president and CEO Nelson Gill, is vehicle setup. Vehicle weight, gear ratio, and tire height all play a part in choosing the ideal stall speed range for your vehicle.
We’ll look at vehicle weight first.
Gill says ACC Performance uses curb weight — or weight as the vehicle sits — when calculating ideal stall speed. He notes that people often mistake curb weight for gross vehicle weight rating. The gross vehicle weight is the weight of that vehicle plus the additional weight it’s designed to carry, like passengers, luggage, and fuel. These combine to equal gross vehicle weight.
“We must remember that the torque converters’ output comes from fluid pressure vs. resistance,” Gill said. “The heavier the vehicle weighs, the more resistance that there is in moving it. Conversely, a lighter vehicle takes less resistance to move. This brings us to the resistance against the pressure that tries to move the vehicle. The more resistance (weight) against the torque converter, the higher the stall speed to move that weight. The less resistance against moving the vehicle, the lower the stall will be in the torque converter.”
Now we’ll factor in gear ratio.
“As the ratio gets larger, the engine has to turn more rpm to make the axle rotate the same number of revolutions,” Gill said. “A 3.08:1 rear gear ratio would be considered a road gear for cruising or top end speed, as the engine turns the driveshaft 3.08 revolutions for every one revolution of the axle. Therefore, a 4.11:1 would be considered a pulling gear for 4 x 4 vehicles to gain low-end torque. It is also a usable gear ratio to compensate for tall tires, commonly used for drag racing.”
Along with gear ratio, the height of the tire makes a big difference on actual output and the performance of the vehicle.
“Most ring and pinion gears are designed for a 26-inch overall diameter (OD) tire,” Gill said. “That means for every 1.48 inches over 26-inches in diameter, you can take one whole gear set out (less) in order to get the final drive ratio. For our calculations and easier math, we round it up and use 1.5 inches over the 26-inch tire. As you can see in the picture below, the taller tire will travel further than the smaller tire with only one revolution.”
Case Study
To understand the effect of vehicle, gear ratio, and tire height, Gill offers up a case study based on a vehicle with a curb weight of 3,550 pounds:
“If our test vehicle has a 3.73 gear ratio with 26-inch tires, then the gear ratio will run true because of the tire height.
- If we had changed the 3.73 gear to a 4.56 gear ratio, the torque converter would in fact stall less due to the lower resistance needed to move the vehicle.
- With the 3.73 ratio, if we went from a 26-inch-tall tire to a 27.5-inch tire, the roll out of the tire will give us 3.55 rear gear output and performance. That is one whole gear ratio less. (Note: NOS and Superchargers/turbos like the longer or lower gears to give them the time needed to load up).
- The same is true for the opposite, if you went to a 24.5-inch tire from the 26-inch tire, then your ratio will increase (that is one whole gear set more) to 3.90 output and performance.
Rolling Resistance
When considering gears and tire combinations, there is another factor that comes into play: rolling resistance.
“You can have too much tire,” Gill said. “An over-sized tire or even tires with not enough air in them can hinder the performance and speed of the vehicle, not to mention that the actual weight of the over-sized tire is higher. This is known as “unsprung” weight, which also includes the weight of the wheel, rotors, and other rotating parts. This increased rotating mass robs horsepower.”
With the gear ratio and the rollout of the tire, you can better see how much resistance there is against moving the vehicle. As we mentioned in the first post of the series, that resistance and the diameter of the torque converter dictate how the torque converter stalls.
The combined information of these All About Stall posts should help you understand that actual stall range is variable and depends on your engine and vehicle setup. You’ll need to provide your sales rep accurate information on your setup in order to get the right stall speed for your application.
I am building a 2000 pound roadster with a gm 350 which I am planning on a retro roller cam and has a turbo 350. The gear is 273. I want to be able to accomplish 400 hp. The 273 gears will affect me the most but if I run a .510 lift at 110 degrees what stall would I need? If I moved up to .373 what stall?
I have a 3900 pound car 3:73 gear and a 28″ tire. A BBC pulls it around but the converter is in before my cam (bad stall choice) would a looser converter help its performance.
Hey Hunter, if you think that you made a bad choice in choosing the torque converter you currently have and it feels too tight, then yes go looser. But, to make a correct choice based on facts, we’re going to need to know more about the engine and camshaft specs—you should give the Summit Racing technical department a call (330-630-0240).
Hi I have a 81 camaro (3300 pound)
350 ported summit racing vortec head
Comp cam extreme energie 268 (.480 lift) flat top piston (around 400 hp) and 3:73 gm 10 bolt i made 8.249 sec 1/8 mile with 26 inch slick but with manual trany …want to swap full manual th 350 wath stall i need??
I would contact Hughes for advice. That’s a mild set up more or less a hot street or mild bracket race engine. 2200-2500 is what should be installed for street driving.
HELLO I HAVE A 97 GMC K1500 4X4 383 STROKER 3” BODY 6” SUSPENSION 35” TIRES WITH 456 GEARS WHAT TORQUE CONVERTER SHOULD I BE RUNNING HAVE 4L60E THANK U
I have a 94 gmc sierra weighs (5600pounds) and has 35” tires with a 460LE trans and gear ratio at 4.56 , not sure on the RPMs , im looking for the correct torque converter for this application , currently my trans has stock converter which sounds forced at over 60mph , can someone help choose the correct converter for my application
I have a 94 gmc sierra with a 350 engine weighs (5600pounds) and has 35” tires with a 460LE trans and gear ratio at 4.56 , not sure on the RPMs , im looking for the correct torque converter for this application , currently my trans has stock converter which sounds
What do you recommend:
1996 Dodge Ram 1500/408 stroker+.03. 525hp at 5500, 540Tq at 3900
Curb wt- 4950
Gr ratio- 3.92, 32” tire
Lift 580
LSA 114
285 @ .500
No mid eng plate
46re
1st- 3200, 2nd-3300, 3rd 2800, OD 2500
Current PATC 2200 stall. Spot on 2200
It’s used as a truck. I pull a boat 6500lbs. It’s pretty wild, empty in 1st to 2nd. But a dog in third when down shifting. Sobering if a 2800 is perfect, but 2600 would be better when pulling the boat.
Headed back to Dyno. Added 42# injectors. Like to get your thoughts on stall before getting ecm reprogrammed.
Thanks.
Hey Matt, click here to contact the Summit Racing tech folks. They’ll ask you some specifics on your Ram and help you figure out the best option.
Hello I have a full body 1988 Foxboro mustang with a chevy ls2 243 heads ls6 intake and throttle body 4l60e tranny 26 in tires the cam is comp cam 54-459-11. Its 617 int and 624 ex duration 23.1 int. 239 ex and 113 I hope that helps. Oh 456 gear. I push foot brake hard as I can but it only goes to 1800 rpm. 4000 stall yank converter I’m thinking I paid big bucks for wrong converter. Can I go with maybe a 373 gear and run a Better time its best time was 12.50 14 and 7.97 1/8